Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0. nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0. nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0. The distinct triplets are [-1,0,1] and [-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
Using two pointer techniques, we can simply go through all combinations.
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
sorted_nums = sorted(nums)
result = set()
first_index = 0
end_index = len(sorted_nums) - 1
while first_index < (len(sorted_nums) - 2) and sorted_nums[first_index] <= 0:
second_index = first_index + 1
third_index = len(sorted_nums) - 1
while second_index < third_index:
total = sorted_nums[first_index] + sorted_nums[second_index] + sorted_nums[third_index]
if total > 0:
third_index -= 1
elif total < 0:
second_index += 1
else:
result.add((sorted_nums[first_index], sorted_nums[second_index], sorted_nums[third_index]))
third_index -= 1
second_index += 1
while second_index < third_index and sorted_nums[second_index - 1] == sorted_nums[second_index]:
second_index += 1
while second_index < third_index and sorted_nums[third_index + 1] == sorted_nums[third_index]:
third_index -= 1
first_index += 1
return result
搶先發佈留言