Given an integer array nums
, return an array answer
such that answer[i]
is equal to the product of all the elements of nums
except nums[i]
.
The product of any prefix or suffix of nums
is guaranteed to fit in a 32-bit integer.
You must write an algorithm that runs in O(n)
time and without using the division operation.
Example 1:
Input: nums = [1,2,3,4] Output: [24,12,8,6]
Example 2:
Input: nums = [-1,1,0,-3,3] Output: [0,0,9,0,0]
By calculating prefix and postfix, we can get a way like this
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
prefix = []
postfix = []
result = []
for n in nums:
if len(prefix) is 0:
prefix.append(n)
else:
last_element = prefix[len(prefix) - 1]
prefix.append(n * last_element)
for n in reversed(nums):
if len(postfix) is 0:
postfix.insert(0, n)
else:
last_element = postfix[0]
postfix.insert(0, n * last_element)
for index in range(0, len(nums)):
if index == 0:
prefix_num = 1
else:
prefix_num = prefix[index - 1]
if index == len(nums) - 1:
postfix_num = 1
else:
postfix_num = postfix[index + 1]
result.append(prefix_num * postfix_num)
return result
Follow up: Can you solve the problem in O(1)
extra space complexity? (The output array does not count as extra space for space complexity analysis.)
We can combine prefix and postfix array into result array instead of using 2 different arrays
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
result = []
for n in nums[:-1]:
if len(result) is 0:
result.append(1)
result.append(n)
else:
prefix_num = result[len(result) - 1]
result.append(n * prefix_num)
postfix = 1
for index in range(len(nums) -1, 0, -1):
postfix = nums[index] * postfix
result[index - 1] = result[index - 1] * postfix
return result
搶先發佈留言